
Important Milestones in the Study of
Neural Networks with Random Weights

Jürgen Brauer
Faculty of Computer Science

University of Applied Sciences Kempten
Germany

juergen.brauer@hs-kempten.de

Abstract Neural networks with partially random
weights are currently not really an independent field
of research. However, the first works on random
neural networks date back to the 1990s and in the
last three decades there have been important new
works in which random weights have been used
and which are promising in that they give surpris-
ingly good results when compared to approaches in
which all weights are trained. These works, how-
ever, come from very different subareas of neural
networks: Random Feedforward Neural Networks,
Random Recurrent Neural Networks and Random
ConvNets. In this paper, I analyze the most impor-
tant works from these three areas and thereby follow
a chronological order. I also work out the core result
of each work. As a result, the reader can get a quick
overview of this field of research.

Keywords: Random Neural Networks, Random
Convolutional Neural Networks, Deep Learning,
Neural Networks

1 Introduction

As soon as one uses random numbers in an al-
gorithm, we speak of a randomized algorithm or
a Monte-Carlo approach. Many successful algo-

rithms in computer science are such Monte-Carlo ap-
proaches and show the great benefits of using ran-
domness. For example, the Particle Swarm Opti-
mizer (PSO) uses a large amount of particles, which
in each update step move a little bit in the direction
of the previously found optimum and at the same
time also a little bit in a random direction, in order
to scan the search space on the way to the supposed
optimum. Another example for a successful Monte-
Carlo algorithm is the particle filter. Probable sys-
tem states in a system state estimation problem are
represented here by a set of weighted particles. At
the beginning, the particles are typically distributed
randomly in the state space and then iteratively pass
through two essential steps: a so-called measurement
correction step, where the particles are redistributed
in the state space due to new measured values and
a so-called prediction step, where knowledge about
the system is used to shift the particles also in the di-
rection of more probable states. In an importance re-
sampling step random numbers are used to calculate
which particles should be retained in the population
in the next step. Here, randomness helps to maintain
the variance of possible solutions.

Neuronal networks are no exception to this rule. It
is also known that randomness can help here. Neu-

1



ronal networks are typically initialized randomly and
it has been shown that some random distributions can
be more helpful than others for the initialization of
weights. Dropout within a Multi Layer Perceptron,
for example, is a technique that randomly decides for
each individual neuron in each training step whether
the neuron is included or ignored in that training step.
In contrast to this, the technique of data augmenta-
tion uses randomness outside the model: the actual
training data is augmented by random transforma-
tions in order to increase the variance of the training
data and thus make the model itself invariant to trans-
formations of the input data in the inference phase.

At the beginning of the 1990s, a first work in
the field of neural networks was presented [21],
which showed that layers with randomly initialized
weights, which are not trained in the following, can
have advantages. In the following three decades
there were several other works in the field of neural
networks with random weights - from different areas
and with very different architectures [11], [29], [1],
[5], [31], [13], [19], [4], [14], [28], [7], [20], [15],
[24], [33], [22]. However, random neural networks
have not really established themselves as an indepen-
dent field of research. It should be noted that ran-
dom neural networks almost never use completely
random weights: usually, some layers of random
weights are used in combination with layers where
the weights are trained (e.g., ”readout” layers).

In this paper I would like to offer the interested
reader a compact overview of the field of random
neural networks. I present the most important works
from the field of random feedforward neural net-
works, random recurrent neural networks and ran-
dom convnets. Besides the presentation of the re-
spective approaches of these works, I also describe
the main results of the works in a compact way. This
is intended to give the reader a comprehensive and
targeted overview of the work on random neural net-
works.

There are several previous survey papers on ran-
dom NN. The review by Scardapane and Wang [25]
(2017) and the review by Cao et al. [3] (2018) both
present a broad overview. In contrast, a recent review
by Gallicchio and Scardapane [8] (2020) focuses es-
pecially on attempts at extending the ideas of random
NN to deep neural architectures with many layers.

All these previous surveys, however, represent
broad representations of these topics. In contrast,
I only select the most important milestones in this
area here. Further, I present the respective work in
more detail and highlight the most important results
of each work.

2 Random Feedforward Neural
Networks

1992: Random Vector Functional Link Network
(RVFL). The review by Cao et al. [3] shows
that NN with random weights are not a new idea.
Pao and Takefuji [21] explored the idea of using
random weights in a feed-forward network already
in 1992. They introduced the idea of Random Vector
Functional Link Networks (RVFL). A RVFL is a
simple feedforward network with a single hidden
layer and an output layer, but in contrast to a
Multi-Layer-Perceptron (MLP), the output layer
does not only get its input from the previous hidden
layer, but also from the input layer. So there are
what is nowadays called a skip-connections. Further,
in a RVFL the weights from the input layer to the
hidden layer are not trained, but only the weights
from the input and hidden layer to the output layer.
They underline the success of this random NN
model by showing that RVFLs have been used
in many real-world applications, e.g., time-series
data prediction and English language handwritten
script recognition. In 1995, Igelnik and Pao [12]
could prove that the RVFL model is a universal

2



function approximator as the MLP is, provided
the function to be approximated satisfies certain
smoothness conditions. Contribution: This work
showed a new way for research: neural networks
with partly random weights make sense and have
some advantages.

2004: Extreme Learning Machine (ELM).
Inspired by the RVFL model, Huang et al. [11]
explored in a series of works feed-forward NN
with partially or fully connected multiple layers. In
contrast to the RVFL model no skip connections are
used in ELMs. In ELMs all the weights to hidden
neurons are randomly set and only the weights to the
output layer are computed using the Moore-Penrose
inverse. This makes learning extremely fast and
hence the name Extreme Learning Machine. In
2006, Huang et al. [10] presented a work which
proved the universal function approximation capa-
bility of ELMs with a single hidden layer for almost
any nonlinear piece-wise continuous function that
is used as activation function for the hidden nodes.
Contribution: Here it was shown that random
weights to hidden layers in the the standard multi
layer perceptron (MLP) architecture and random
weights in feedforward neural networks with par-
tially connected layers also work. It was also shown
that an iterative learning approach like gradient
descent is not absolutely necessary, if the weights to
the output neurons can be calculated.

2013: The No-Prop algorithm. Very similar to
ELM, Widrow et al. [29] proposed an approach in
2013 which they called No-Prop. As for ELM, the
No-Prop approach also uses several hidden layers,
where the weights to the hidden neurons are assigned
randomly and are fixed. Only the output weights
are trained. But while ELM uses the Moore-Penrose
inverse in a batch-fashion in order to compute the
weights to the output units, the No-Prop approach

uses the iterative LMS (Least Mean Square) algo-
rithm, which is also called delta rule or Widrow-
Hoff rule - a weight update rule for a neural network
with only a single layer. While the Perceptron learn-
ing rule was designed for neurons with a Heaviside
step activation function, the delta rule can be con-
sidered as a more general solution, since it can be
applied to neurons with general activation functions.
So the central difference between ELMs and the No-
Prop approach is the way how the output weights
are trained, while another difference is that ELMs
by definition also can consist of partially connected
layers.

The authors also compared No-Prop with Back-
propagation (Back-Prop) trained networks for the
classification of 200 different Chinese characters. 50
noisy versions of the 200 training patterns were used,
resulting in 10.000 training patterns. Models were
trained with Back-Prop and with No-Prop and then
tested on 100 test characters. The results showed,
that when the number of training patterns is less than
the LMS network capacity, the No-Prop network
and the Back-Prop network performed equivalently.
Here, the LMS network capacity of a network was
defined as the maximum number of distinct patterns
that can be trained into a No-Prop network with
zero error. When training over capacity, Back-Prop
performed better than No-Prop. But by increasing
the number of hidden neurons, i.e., by increasing the
LMS network capacity, the performance of No-Prop
was similar to that of the Back-Prop algorithm.
Contribution: An important contribution of this
work is the interesting comparison between a ran-
dom neural network where the output layer is trained
with No-Prop and a non-random neural network
trained with the standard Back-Prop method.

2016: Comparison of ELM with No-Prop.
Alshamiri et al. [1] compared the classification
accuracy of ELM networks with randomized feed-

3



forward networks trained using No-Prop. For their
evaluation five standard benchmarks for classifi-
cation were used and a range of different number
of neurons for the hidden randomized layer was
considered ([10, 20,..., 190, 200] neurons). The
results showed that the No-Prop algorithm provides
good generalization performance and that this per-
formance is largely independent from the number of
hidden neurons. The authors claimed that No-Prop
was rather slow compared to ELM, but unfortunately
there are no numbers regarding computation time
given in their paper. ELM showed a poor general-
ization performance on the benchmarks. However, a
third approach was also considered, which is a minor
variant of the ELM approach with a regularization
term. This regularized ELM approach achieved
approximately the same test accuracy values as the
No-Prop model and even outperformed No-Prop
on some of the benchmarks. Contribution: ELM
random networks seem to generalize much worse
compared to No-Prop trained random networks.

2019: Weight Agnostic Neural Networks.
Gaier and Ha [5] analyzed the performance of
network architectures that were trained in an evolu-
tionary fashion. Starting with very simple networks
in the first generation 1.) new nodes are inserted
into the network, 2.) connections between nodes
are added, or 3.) activation functions of nodes are
changed. For 3.) the authors considered a large
range of possible activation functions including
linear, step, sin, cosine, Gaussian, tanh, sigmoid,
absolute value, invert and ReLU. Since the focus of
their work was to search for good architectures and
not for good weights, the weights were not trained at
all, i.e., random weights were used. Among others
two different conditions were considered in the
experiments: 1.) experiments, where the weights to
the nodes were initialized randomly and 2.) experi-
ments, where there was only a single random value

which was assigned to all weights. The experimental
evaluation was carried out using three continuous
control tasks: 1.) given a cart-pole system, a pole
must be swung from resting to upright position and
then balanced, 2.) a two-legged agent has to learn
to walk through randomly generated terrain, and
3.) a two-dimensional car-racing environment. The
results were surprising in the sense that even evolved
networks with a single shared random weight could
solve such complex control tasks. By evaluating
different weight values from the interval [-2,2] the
authors also showed that the evolved architectures
were not sensitive to the value of this single shared
weight. Contribution: This work made a huge
contribution by rendering the importance of weights
of neural networks in a new light since it suggests
that it is more the topology and the function of the
nodes which are important for the performance of
such networks and not the specific weight values.

2019: Random topologies, but data transfor-
mation is learned. Xie et al. [31] explored ran-
domly wired neural networks for image recognition.
The interconnection topology of these random neural
networks is automatically generated. Three differ-
ent stochastic graph generators are used to produce
graphs with different topologies. E.g., the Watts-
Strogatz (WS) graph generator is used to generate
graphs with small-world properties. A generated
graph is then transformed into a directed acyclic
graph (DAG). Edges in this directed graph define
how the data (tensors) flows from one node to an-
other. Each node in the graph transforms an input
tensor to an output tensor, where the data transfor-
mation is learned. The nodes can have a different
number of input and output edges and each node
performs three steps: an aggregation, a transforma-
tion and a distribution of the data. In the aggre-
gation step the input data is first combined via a
weighted sum where the weights are learn-able. In

4



the transformation step the data is then processed
by a ReLU-convolution-BatchNormalization triplet,
where the same convolutional filter size is used for
all nodes. In the final distribution step the node sends
out a copy of the transformed data over all the out-
put edges to subsequent nodes in the graph. Surpris-
ingly, several variants of these randomly generated
neural networks had competitive and even better ac-
curacy on the ImageNet benchmark (classification
task) when compared with hand-designed ConvNets.
E.g., when considering only networks with less than
600 MFLOPs, a randomly generated neural network
achieved 74.7% top-1 accuracy compared to 74.7%
by MobileNet v2 [23] and 74.9% by Shuffle-Net v2
[18]. A randomly generated network with a num-
ber of FLOPs similar to that of ResNeXt-101 [30]
even outperformed this model: 80.1% (random NN)
compared to 79.5% (ResNeXt-101) top-1 accuracy.
Contribution: This work showed that neural net-
works with randomly generated topologies (note that
the weights are learned here) can perform as well as
hand-designed network topologies.

3 Random Recurrent Neural Net-
works

2001/2002: Reservoir Computing is born. In 2001
Jaeger introduced the Echo State Network (ESN)
[13]. A similar idea was introduced as the Liq-
uid State Machine (LSM) by Maass et al. [19] in
2002. Both approaches share a common idea: an
input signal is mapped with the help of a recurrent
neural network with a random topology and random
weights to a sequence of new states. This random
recurrent neural network is called a reservoir, since
it provides a reservoir of neuronal firing dynamics
which has shown to be helpful as a (pre-)processing
step for many tasks as, e.g., classification tasks. An-
other distinct set of neurons are used as output neu-

rons. The tasks of these output neurons is to read
the state of the reservoir and map it to a desired
output state. Note, that only the weights from the
reservoir neurons to these output neurons are trained
(e.g., by linear regression), while the connections be-
tween neurons within the reservoir are randomly ini-
tialized and fixed. The principle of reservoir comput-
ing, to perform a non-linear mapping of input data
before further processing, is very similar to the ap-
proach of kernel-based learning methods like Sup-
port Vector Machines (SVM) [2], where input vec-
tors are mapped with the help of a kernel function to
a higher-dimensional feature space where it is much
easier to find a separating hyperplane (for classifica-
tion problems). While both the ESN and the LSM
share the central idea of exploiting the non-linear
dynamics of a reservoir, the ESN can be discrimi-
nated from the LSM approach by the property that
the LSM approach focuses on biological modeling
and uses spiking neurons. Reservoir computing can
also be considered as an approach to circumvent dif-
ficulties when training recurrent neural networks: In-
stead of training the weights, the weights are fixed
and used with their randomly initialized values.

The reservoir has to have some properties in
order to provide a helpful mapping from the input
to a feature space, which can then be used by the
readout neurons. One important property is that the
neurons have to provide a nonlinear mapping, e.g.,
by using fire-rate model neurons with a non-linear
activation function. Another property is related to
the wish that the reservoirs shall store information
within the recurrent loops in the network such that
it has an influence onto the computations in the
next processing step. In order to achieve this, the
network has to have the Echo State Property (ESP).
A network with this property asymptotically elim-
inates any information from the initial conditions.
In other words: The reservoir has to have a ”fading
memory”. Different variants of reservoirs have been

5



analyzed in literature, e.g., ESNs with additional
direct trainable input-to-output connections, or,
e.g., ESNs with output neurons to reservoir neurons
feedback connections. Contribution: Both the
ESN and the LSM model have shown: the dynamic
firing patterns of random recurrent neural networks
can provide a beneficial representation for further
processing.

2003: Reservoir computing with a physical
reservoir. Reservoirs can be implemented by
simulating a recurrent neural network in a computer.
However, some attractiveness of the reservoir com-
puting approach goes back to the possibility to use
even physical reservoirs. The central idea here is to
use a physical random nonlinear excitable medium
which provides a high-dimensional dynamical
response to an input signal (”echo”). Many natural
systems can be used as physical reservoirs, since
many of them show such a non-linear response when
an input signal is given. In a pioneering work with
the title ”Pattern recognition in a bucket” from 2003
the benefit of such a physical reservoir for pattern
classification was shown by Fernando and Sojakka
[4]. In this work a simple discriminative classifier
for the words ”one” vs. ”zero” was built with the
help of a bucket of water. A glass bucket of water
was placed on top of an over-head projector. The
audio input signal of samples of the word ”one” or
”zero” was first pre-processed using a short-time
Fourier transform in order to compute the underly-
ing frequencies of the audio signal. The frequency
spectrum was then used as input and translated into
movements of 8 electrical motors which stimulated
the water surface. Each of the 8 motors was driven
by another part of the frequency spectrum. The
water - as a natural system with non-linear dynamics
- then responses to this input signal with waves that
non-linearly interact with each other. The resulting
interference patterns were filmed and used as input

to a perceptron classifier. In a recent review from
2019 Tanaka et al. [27] give an overview of different
approaches to design physical reservoirs. This work
shows that a large number of very different reservoir
systems have already been tried out: Authors have
used electronic, photonic, spintronic, mechanical
and even biological reservoirs in the context of
reservoir computing. Contribution: The idea of
using random dynamical systems to (pre-)process
an input signal is not restricted to simulations with
artificial neural networks. Physical reservoirs can be
used as well.

2007: Stacked Echo State Networks with ad-
ditional top-down information flow. Since many
time series as texts or speech show a multi-scale
characteristics, Jaeger [14] proposed a hierarchical
architecture, called Dynamical Feature Discoverer
(DFD), where each layer consists of an ESN and
is supposed to represent dynamical features on
different temporal scales. This is the first experi-
mental work on stacked reservoirs. This architecture
provides two flows of information: A bottom-up
flow of information, where increasingly coarser
features are extracted from the input signal and
a top-down flow of information, where feature
expectations are passed down. Feature expectations
are generated by each level in the architecture in
the form of vote vectors. These vote vectors are
used as weights to combine the next-lower-level
features vectors into a final representation of the
input signal at that level. While the feature vector
can be considered as a finer-grained representation
of the signal, the vote signal that comes from the
layer above can be seen as some abstraction of
the feature signal. Contribution: Hierarchical
representations are probably one of the key elements
for the success of Deep Learning. This first work
from the field of reservoir computing showed that
hierarchical reservoirs, i.e., hierarchies of random

6



recurrent neural networks, work as well.

2010: Stacked Echo State Networks with a
readout layer for each reservoir. Triefenbach et al.
[28] also experimented with a hierarchy of Echo
State Networks for the task of phoneme recognition.
But in contrast to the previous work by Jaeger
[14], the authors used a readout layer after each
of the reservoirs which builds the input for the
next reservoir layer. Experiments on the TIMIT
benchmark showed that such a layered hierarchy of
reservoirs can yield better results when compared
to a shallow (one-layer) reservoir. Contribution:
This work showed for the first time that hierarchical
random recurrent neural networks work better than
shallow random recurrent neural networks.

2017: The vanilla version of stacked ESNs:
Deep Echo State Networks (deep ESN). While
Jaeger [14] and Triefenbach et al. [28] al-
ready explored the idea of stacked ESNs, Gallic-
chio and Micheli [7] experimented with the vanilla
version of stacked ESNs. In their work they ex-
perimented with multiple reservoir layers which are
stacked one on top of each other - without such
an additional mechanism like vote vectors as in the
DFD architecture [14] and in contrast to [28] only
one readout layer was used on top of the highest
reservoir layer. The first reservoir layer is fed by
the input signal. Successive layers are then fed by
the output of the previous one. The new model is
called deepESN (deep Echo State Network). The au-
thors described also different versions of such a deep
ESN: The deepESN-IA (input-to-all) projects the in-
put not only to the first reservoir layer, but also to all
other reservoir layers. For comparing such models of
stacked reservoirs with shallow variants, the authors
also considered groupedESN, where also multiple
reservoirs are used and each reservoir receives the in-
put, but the reservoirs are not stacked on top of each

other in this variant. Experiments were done with
a small dataset of two sequences in order to investi-
gate the extent of time-scales differentiation among
the different reservoir layers. The spectral radius of
the weight matrix is the largest absolute value of its
eigenvalues. Both, the spectral radius and the leak
factor of the leaky-integrator neurons determine how
long old inputs influence new states of the reservoir.
In order to to separate the influence of these hyper-
parameters from architectural aspects (stacked vs.
not-stacked, input projects to first reservoir only vs.
input projects to all reservoirs), both the spectral ra-
dius and the leak factor was set to the same value for
each reservoir layer. In the experiments the first input
sequence for the models consisted of 5000 elements
uniformly drawn from an alphabet of 10 elements,
while the second sequence only differed from this
first one by another value for step 100. The differ-
ence in the development of the resulting states of the
reservoirs after this step 100 was then observed. The
results showed that a stacked reservoir architectures
show a much larger time-scale differentiation which
suggests that a model with stacked reservoirs has the
ability to show a larger diversification of temporal
representations of sequences. Note that in 2017, also
another work presented by Malik et al. [20] pro-
posed the vanilla version of stacked ESNs under an-
other term (Multilayered Echo State Machine (ML-
ESN)) which was experimentally evaluated on seven
different benchmarks and outperformed the shallow
ESN approach with just one reservoir layer. In a re-
cent survey, Gallicchio and Micheli [6] summarize
the advances in the field of deep reservoir comput-
ing with a focus on the Deep ESN model and its
variants. Contribution: Hierarchies of random re-
current neural networks can better represent a large
quantity of different temporal sequences compared
to shallow reservoirs.

7



4 Random ConvNets

2009: One and two layer CNNs with random
filters. Jarett et al. [15] analyzed in a large set
of experiments on the Caltech-101, NORB, and
the MNIST dataset 1.) the influence of different
non-linear activation functions, 2.) whether there
is an advantage of a two-layer feature hierarchy
compared to a single-layer feature hierarchy, and
3.) compared random conv layers with conv layers
trained unsupervised or supervised. Surprisingly,
their results show that a two-layer CNN with
random filters yielded a high 62.9% accuracy on
the the Caltech-101 dataset. The best accuracy was
achieved by unsupervised pre-training of the filters
followed by supervised refinement. However, the
improvement over purely supervised training is
rather small. The authors also computed the optimal
input patches for the random filter bank in the first
layer and found that these input patterns are very
similar to the optimal inputs when using a learned
filter bank in the first layer. Thereby they showed,
that a random filter bank can be frequency and
orientation selective. Contribution: This work
showed: random filter banks work nearly as good as
trained filter banks.

2011: One layer convolutional square-pooling
architecture with random filters. Saxe et al. [24]
already provided 2011 a mathematical analysis why
filters with random weights perform so well. They
proved mathematically that even filters with random
weights are frequency selective and underlined that
frequency selectivity is an important ingredient
for object recognition systems. An experimental
evaluation was presented on the CIFAR-10 and the
NORB dataset where CNNs with random filters
and CNNs with trained filters were compared. For
the NORB dataset, they trained 110 models which
used random filter weights. 110 other models where

also trained but the filters were pre-trained using
TICA, a feature-learning algorithm introduced by
Le et al. [17], and then filters were fine-tuned for
better discrimination using the normal Backprop
algorithm. For the CIFAR-10 experiments 55
models with random filters and 55 models with filter
tuning were trained. The results on the CIFAR-10
dataset showed that fine-tuning the filters only gave
an accuracy advantage of about 6%. The results
on the NORB dataset showed that some of the top
random architectures could achieve even a slightly
higher accuracy (89.6%) compared to the top fully
trained architectures (86.5%). While this work
of Saxe et al. [24] is highly interesting, there is
one large drawback. Both, the mathematical and
the experimental evaluation was carried out on
non-standard CNNs, where in the pooling-layers
neighboring filter responses were combined together
by squaring and summing them. The authors called
this a ”convolutional square-pooling architecture”.
This is different from the standard max-pooling
layers that are nowadays used, where the filter
responses are not squared and instead of summing
them the maximum response is computed. For
this, it remains an open question whether similar
results would be achieved with standard CNNs.
Contribution: Nevertheless, this work suggests
that a better architecture can have a larger impact
on the the final accuracy of a model compared to
the fine-tuning (training) of the filters. With this
interesting observation the authors underline that for
future works that experimentally evaluate new learn-
ing techniques it would be helpful to distinguish
the contribution of the architecture from those of
the learning techniques by reporting random weight
performance as well. A further interesting result was
described by the authors: the classification accuracy
did not depend on the type of distribution that was
used to initialize the random filter weights (at least
uniform, Laplacian, and Gaussian distributions were

8



considered) as long as the distribution was centered
around zero.

2017: Convolutional Random Vector Func-
tional Link Network (CRVFL). Zhang and Sug-
anthan [33] demonstrated the benefit of random
convolution layers for the visual tracking task. Here
a CNN based classifier is learned in order to decide
whether image patches contain the image structure
to be tracked or not. The authors used not only the
original input patch as input for the classifier (FC
layer) but also features that were generated with
the help of a conv layer where the weights were
randomly initialized and fixed. Only the weights
to the fully connected layer of the classifier were
trained. The results of an experimental evaluation
showed that the resulting visual tracking architecture
achieves state-of-the-art performance on a visual
tracking benchmark. They called this architecture
Convolutional Random Vector Functional Link
Network (CRVFL) since it ”can be regarded as a
marriage of the convolutional neural network and
random vector functional link network” where a
FC layer also gets as input not only the original
input, but a randomized non-linear projection of
the input data as well. Contribution: Random
ConvNets, that map the pixel-representation of
an image with the help of a hierarchy of random
filters to a feature-representation, can provide a very
helpful representation for image classification and
visual tracking.

2019: Random feature hierarchies in several
different CNN architectures. Rosenfeld and Tsot-
sos [22] evaluated different standard CNN architec-
tures where the topology was given (fixed), but only
a fraction of the filters in the feature hierarchy was
learned, while keeping the other filters on their ran-
dom start values or setting them to zero. For the
evaluation they considered wide-residual networks

[32], DenseNets [9], AlexNet [16] and VGG19 [26].
The classification accuracy was evaluated on the CI-
FAR and CIFAR-100 dataset. In the study either
only a constant fraction of filters of each convolu-
tion layer was trained (fractions considered: 7%, 8%,
9%, 10%, 4%, 70% ), or a constant number of filters
per layer were trained (1, 5, or 10 filters). The re-
sults showed that learning only a small proportion
of the filters leads to models with significant higher
accuracies compared to random guessing. E.g., for
CIFAR-100 a VGG19 where only 70% of the fil-
ters were trained (while the other filters were used
as they were randomly initialized) achieved an ac-
curacy of ca. 45% (accuracy for random guessing:
ca. 1%) and with only 7% of the filters trained
the same model architecture achieved an accuracy of
ca. 33%. This work also reported that setting the
weights of the filters that were not trained to zero
instead of using their random start values, yielded
significantly smaller model accuracies. Unfortu-
nately, the authors did neither provide comparative
accuracies when training 100% of the filters in each
model/dataset combination nor they evaluated the
extreme cases, when training 0% of the filters, i.e.,
when using all of the filters just with their random
start weights in the feature hierarchy. Contribution:
This important work showed that when more and
more of the randomly initialized filters were trained
the benefit regarding an improved model accuracy
became smaller and smaller.

5 Conclusions

Although these 15 historically significant works have
investigated very different architectures in the field
of random neural networks and very different exper-
iments with different data sets have been carried out,
a common clearly recognizable result remains:

Neuronal networks with (partly) random weights

9



work surprisingly well. The key to good models
lies more in finding or learning suitable architectures
than in learning good weights for a specific manually
designed architecture.

For future work introducing and experimentally
evaluating new neural network architectures and
learning algorithms, it should therefore become a
standard procedure to also indicate the performance
of the proposed architecture when random weights
are used. Only this way the contribution of the archi-
tecture can be clearly distinguished from the learning
algorithm in terms of performance.

References

[1] A. K. Alshamiri, A. Singh, and B. R. Suram-
pudi. Comparative analysis of elm and no-prop
algorithms. In 2016 Ninth International Con-
ference on Contemporary Computing (IC3),
pages 1–5, 2016.

[2] Bernhard E. Boser, Isabelle M. Guyon, and
Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In David Haus-
sler, editor, Proceedings of the 5th Annual
Workshop on Computational Learning Theory
(COLT’92), pages 144–152, Pittsburgh, PA,
USA, July 1992. ACM Press.

[3] Weipeng Cao, Xizhao Wang, Zhong Ming, and
Jinzhu Gao. A review on neural networks with
random weights. Neurocomputing, 275:278–
287, 2018.

[4] Chrisantha Fernando and Sampsa Sojakka. Pat-
tern recognition in a bucket. volume 2801,
pages 588–597, 09 2003.

[5] Adam Gaier and David Ha. Weight agnostic
neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32 (NIPS 2019),
pages 5364–5378. Curran Associates, Inc.,
2019.

[6] Claudio Gallicchio and Alessio Micheli. Deep
echo state network (deepesn): A brief survey.
ArXiv, abs/1712.04323, 2019.

[7] Claudio Gallicchio, Alessio Micheli, and Luca
Pedrelli. Deep reservoir computing: A crit-
ical experimental analysis. Neurocomputing,
268:87–99, 2017.

[8] Claudio Gallicchio and Simone Scardapane.
Deep randomized neural networks. 2020.

[9] G. Huang, Z. Liu, L. Van Der Maaten, and
K. Q. Weinberger. Densely connected convo-
lutional networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269, 2017.

[10] Guang-Bin Huang, Lei Chen, and Chee-
Kheong Siew. Universal approximation using
incremental constructive feedforward networks
with random hidden nodes. Trans. Neur. Netw.,
17(4):879–892, July 2006.

[11] Guang-Bin Huang, Qin-Yu Zhu, and Chee-
Kheong Siew. Extreme learning machine: a
new learning scheme of feedforward neural
networks. In 2004 IEEE International Joint
Conference on Neural Networks (IEEE Cat.
No.04CH37541), volume 2, pages 985–990
vol.2, 2004.

[12] B. Igelnik and Yoh-Han Pao. Stochastic choice
of basis functions in adaptive function approx-
imation and the functional-link net. IEEE
Transactions on Neural Networks, 6(6):1320–
1329, 1995.

10



[13] Herbert Jaeger. The “echo state” approach
to analysing and training recurrent neural net-
works.

[14] Herbert Jaeger. Discovering multiscale dynam-
ical features with hierarchical echo state net-
works, 2007.

[15] Kevin Jarrett, Koray Kavukcuoglu,
Marc’Aurelio Ranzato, and Yann LeCun.
What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th
International Conference on Computer Vi-
sion, ICCV 2009, Proceedings of the IEEE
International Conference on Computer Vision,
pages 2146–2153, 2009. 12th International
Conference on Computer Vision, ICCV 2009
; Conference date: 29-09-2009 Through
02-10-2009.

[16] Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification
with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012.

[17] Quoc V. Le, Jiquan Ngiam, Zhenghao Chen,
Daniel Chia, Pang W. Koh, and Andrew Y. Ng.
Tiled convolutional neural networks. In J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23
(NIPS 2010), pages 1279–1287. Curran Asso-
ciates, Inc., 2010.

[18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng,
and Jian Sun. Shufflenet v2: Practical guide-
lines for efficient cnn architecture design. In
Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[19] Wolfgang Maass, Thomas Natschläger, and
Henry Markram. Real-time computing without
stable states: A new framework for neural com-
putation based on perturbations. Neural Com-
putation, 14(11):2531–2560, 2002.

[20] Z. K. Malik, A. Hussain, and Q. J. Wu. Multi-
layered echo state machine: A novel architec-
ture and algorithm. IEEE Transactions on Cy-
bernetics, 47(4):946–959, 2017.

[21] Y. . Pao and Y. Takefuji. Functional-link net
computing: theory, system architecture, and
functionalities. Computer, 25(5):76–79, 1992.

[22] Amir Rosenfeld and John K. Tsotsos. Intrigu-
ing properties of randomly weighted networks:
Generalizing while learning next to nothing. In
16th Conference on Computer and Robot Vi-
sion, 2019.

[23] Mark Sandler, Andrew G. Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, 2018.

[24] Andrew M. Saxe, Pang Wei Koh, Zhenghao
Chen, Maneesh Bhand, Bipin Suresh, and An-
drew Y. Ng. On random weights and unsuper-
vised feature learning. In Lise Getoor and To-
bias Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learn-
ing, ICML 2011, Bellevue, Washington, USA,
June 28 - July 2, 2011, pages 1089–1096. Om-
nipress, 2011.

[25] Simone Scardapane and Dianhui Wang. Ran-
domness in neural networks: An overview.
Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 7, 01 2017.

11



[26] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale
image recognition. In International Conference
on Learning Representations, 2015.

[27] Gouhei Tanaka, Toshiyuki Yamane,
Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata,
Daiju Nakano, and Akira Hirose. Recent
advances in physical reservoir computing: A
review. Neural Networks, 115:100 – 123,
2019.

[28] Fabian Triefenbach, Azarakhsh Jalalvand, Ben-
jamin Schrauwen, and Jean pierre Martens.
Phoneme recognition with large hierarchical
reservoirs. In J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Pro-
cessing Systems 23, pages 2307–2315. Curran
Associates, Inc., 2010.

[29] Bernard Widrow, Aaron Greenblatt, Youngsik
Kim, and Dookun Park. The no-prop algo-
rithm: A new learning algorithm for multilayer
neural networks. Neural Networks, 37:182–
188, 2013.

[30] Saining Xie, Ross B. Girshick, Piotr Dollár,
Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural net-
works. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
5987–5995, 2017.

[31] Saining Xie, Alexander Kirillov, Ross B. Gir-
shick, and Kaiming He. Exploring randomly
wired neural networks for image recognition.
2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1284–1293,
2019.

[32] Sergey Zagoruyko and Nikos Komodakis.
Wide residual networks. In Edwin R. Hancock
Richard C. Wilson and William A. P. Smith, ed-
itors, Proceedings of the British Machine Vi-
sion Conference (BMVC 2016), pages 87.1–
87.12. BMVA Press, 2016.

[33] L. Zhang and P. N. Suganthan. Visual tracking
with convolutional random vector functional
link network. IEEE Transactions on Cybernet-
ics, 47(10):3243–3253, 2017.

12


